
Can we parse without tagging?

C. Fairon, S. Paumier and P. Watrin

Center for Natural Language Processing – CENTAL – University of Louvain
{fairon,paumier,watrin}@tedm.ucl.ac.be

Abstract

Syntactic parsing is a major area of NLP which has been widely studied with the help of many approaches. Usually, parsers take in
input tagged texts, that is to say texts whose lexical units have been annotated with informations such as lemma, grammatical code,
gender and number. In this paper, we present a parsing method that can work on untagged texts as well as on tagged ones. We then
compare results obtained on specialized texts in their raw and tagged version in order to determine if tagging is absolutely necessary.

Introduction
Syntactic parsing is a major problem in Natural

Language Processing and has been widely studied with
the help of different methods, such as statistical parsing
(Charniak, 1997; Collins, 1996; Magerman, 1995) and
linguistic-based methods (Roche, 1993; Abney, 1996;
Koskenniemi et al., 1992; Ait-Mokhtar & Chanod, 1997).
Traditionally, at least for Romance languages, parsers
take in input tagged texts in which each lexical unit is
given to grammatical and/or inflectional information,
such as lemma, grammatical category, gender and
number. There are many taggers that use a mix of
probabilistic and linguistic information: (Church, 1988),
TreeTagger (Schmidt, 1994), Brill's Tagger (Brill, 1994),
(Cutting et al., 1992), Xerox part-of-speech tagger,
GREYC parser (Giguet & Vergne, 1997), etc. Most of
these tag about 95% of all lexical units correctly. This
means that there is always a certain percentage of
eroneously tagged units which will disrupt the behavior of
parsers.

In this paper we will discuss the possibility of
parsing texts without prior tagging. Therefore we will
apply the same parsing method to two versions of the
same text: one which was first disambiguated by
automatic tagging and one which was not (in the latter
case, a dictionary provides morphological information,
but without disambiguation). Results will be compared in
order to measure the impact of disambiguation. The
method used is a common approach based on precise
linguistic descriptions: electronic dictionaries
(Silberztein, 1993) and lexicon-grammar tables (Gross,
1975).

The framework
The question of whether or not tagging is needed

for parsing arose within the framework of an applied
research project which aims at developing a linguistic
index engine1. In this particular context, indexation is
viewed as the ultimate step towards an information
extraction process. Parsing is therefore understood in a
restrictive way: it is used on texts that resort to a technical
sublanguage (as opposed to general language) and is used
to analyse sentences that contain predefined verbs2 in

1 This research was partly financed by Bureau Van
Dijk. We wish to thank them for their collaboration.

2 The full process involves also the analysis of nominal
forms. As we do not elaborate on this part in this

order to extract their various complements. We built
extraction graphs wich enable us to correctly extract the
syntactic structures described in the linguistic databases
of the lexicon-grammar. The following question then
arose: should these extraction graphs be applied to a
disambiguated text (where each word of the text is
associated with one - and only one – POS tag) or could
the system rely on a “simple” dictionary lookup
procedure that would provides all the possible analyses
for any given word but which would offer no
disambiguation.

Before discussing these two possibilities, we will
first describe the parsing method and the linguistic
resources format.

The parsing method
Contrary to many others parsers, our method is

based on an exact linguistic description and does not use
statistics of any kind. The main part of this description
consists of tables that, for each verb, describe the
elementary structures in which it can appear. We can
automatically generate grammars from such tables, and
subsequently, apply them to texts via the advanced pattern
matching function offered by the Unitex3 software. This
approach has already been illustrated by several works
(Roche, 1993; Senellart, 1999; Paumier, 2003).

Lexicon-grammar tables
Lexicon-grammar tables where introduced by

Maurice Gross who analysed completive verbs in French
(Gross 1975). These tables have since then been extended
to the rest of French simple verbs (Boons et al., 1976;
Guillet & Leclère, 1992) as well as to other kind of
predicates (nouns, adjectives) and various languages.

The tables consist of a formal description of
verbs represented as a matrix, as shown in Figure 1. Each
line corresponds to a verb, and each row represents a
formal syntactic property4. A '+' sign in a cell,

paper, we will not give more details.
3 Unitex is an LGPL-licensed software, available at:
http://igm.univ-mlv.fr/~unitex/
4 Usually, a lexicon-grammar table contains verbs that have the
same main structure (for instance, N0 V N1). For convenience
sake, we proceeded differently in our experiments. This is why
there are properties referring to N4 or N5, which is not standard
in the lexicon-grammar frame. However, this detail has no

respectively '-', means that the verb can, respectively
cannot, appear in the corresponding structure. For
instance, the property N0 V N1 is verified for both
alimenter and allumer; we can therefore have sentences
like:

N0 alimente N1
N0 allume N1

But the property N0 V en N2 is verified for alimenter and
not for allumer; as a result we can have:

N0 alimente N1 en N2

but not:

N0 allume N1 en N2

V

N
0

V
 N

1

N
1

es
t V

pp
 p

ar
 N

0

N
0

V
 e

n
N

2

N
0

V
 à

 p
ar

tir
 d

e
N

3

N
0

V
 à

 N
4

N
0

V
 d

an
s

N
5

abattre + + - - - -
absorber + + - - - -
acheminer + + - - - -
alimenter + + + + - -
allumer + + - - - -
approvisionner + + + - - -
broyer + + + - - -
brûler + + - - - -
chauffer + + - + - -
collecter + + - - - -
comporter + - - - - -
composer + + - - - -
comprendre + + - - - -
concentrer + + - + - -

Figure 1: French verb table

Parametrized graphs
We exploit the content of the table using parametrized
graphs, drawn with the help of Recursive Transition
Network (RTN) formalism. Such a graph describes
linguistic constructions that are relevant to the lexicon-
grammar table.

Each construction is described by a path in the
parametrized graph as shown in Figure 2. The graph
contains parameters. The value of each parameter is given
depending on lexical entries and is given in the columns
of the table. The parameters are named after the
corresponding columns @A, @B, etc (@A=first column,
@B=second column, etc). For Figure 1, the variable @A
corresponds to the verb column.

A table can contain property marks ('+' and '-')
and lexical elements. For each line of the table, a graph is
then generated by substituting the variables as follows:

- if the variable @X refers to '-', the path is removed;
- if it refers to '+', the path is maintained;
- if it refers to a lexical item, it is replaced by this item.

impact on the method presented in this paper.

Properties marks + and – are used as conditions
in the parametrized graph. We describe a set of possible
constructions in the parametrized graph which condition
each construction by referring to its corresponding
property in the table. An automatic process5 then
generates a graph for each entry of the table which only
contains the constructions that are possible for this entry.
Figure 3 shows the graph obtained for the verb allumer.

Figure 2: parametrized graph

Parsing
Our method does not distinguish between pattern

matching and parsing. Once we have generated graphs,
we consider them as patterns. We use the pattern
matching function of Unitex to find all matching
sequences in a text. If sequences are matched by a graph,
then we can say that we have parsed these sequences,
because we can insert outputs in the graph, and therefore,
tag matching sequences.

5 For a complete description of this process, see Unitex manual
at: http://igm.univ-mlv.fr/~unitex/manuel.html

Figure 3: graph obtained for the verb allumer

In order to apply this method, we must define all
of our patterns, which implies having a description of
noun phrases. This is why we use a graph that is an
approximative description of noun phrases.

The experiment

We have applied our parsing method on both
tagged and untagged versions of the same corpus in order
to compare results. In this section we describe our
experiment.

Corpus and patterns
Our experiment aimed at extracting information

in the area of energy. Our 1,500,000 word corpus is a
collection of texts taken from the web. To evaluate our
method we selected 5 verbs representative of the most
common syntactic structures found in the domain of
energy:

- alimenter : N0 V N1 en N2 à partir de N3
- chauffer : N0 V N1 à partir de N3
- consommer : N0 V N1

- contenir : N0 V N1
- produire : N0 V N1 à partir de N3

Naturally, there are other syntactic structures for theses
verbs, but for the purpose of our study, we were
particularly interested in structures containing
complements that were relevant from a semantic point of
view.

Tagged text
As most famous taggers have similar precision

scores, we arbitrarily chose to use the TreeTagger
because it was easy to install and use in our experiment.

We first applied the TreeTagger to our corpus. A
script then rewrites the output of the tagging so that it can
be manipulated by Unitex. This rewriting step basically
consists of changing the tagset. For example, if we
consider the following text:

Ce rapport veut en effet alimenter le débat
social

The TreeTagger will turn it into:

Ce PRO:DEM ce
rapport NOM rapport
veut VER:pres vouloir
en PRP en
effet NOM effet
alimenter VER:infi alimenter
le DET:ART le
débat NOM débat
social ADJ social

Finally, the rewriting script will produce the following
tagged text:

{Ce,ce.PRO} {rapport,rapport.N}
{veut,vouloir.V:P} {en,en.PREP}
{effet,effet.N} {alimenter,alimenter.V:W}
{le,le.DET+Ddef} {débat,débat.N}
{social,social.A}

Untagged text
By untagged text we do not mean that we use no

linguistic information. We use the DELAF electronic
dictionaries for French that are included in Unitex. These
dictionaries provide the list of possible tags for each
word. For instance, the French word est can be considered
as a verb (a form of to be) or an adjective (east). In other
words we do not assign a tag to each word a priori, as
opposed to a tagger that always decides on a particular
tag. This ambiguity is illustrated in the graph shown in
Figure 4.

Figure 4: ambiguous text after dictionary lookup

Is this comparison relevant ?
One can object that the comparaison is irrelevant

because decisions of the statistical guesser are not based
on the same dictionary as the one used for the “no-tagger”
approach.

This is not really a limitation since the words
that are found in the TreeTagger's lexical resources are
also present in the DELAF dictionary which covers a very
large part of the lexicon. However there are some
differences between the outputs of the TreeTagger and
that of the dictionary lookup program:
– some words could be absent from our dictionary

(neologisms, proper names, misspelt words) but the
TreeTagger will always provide a tag for these. This
point will be disscussed below in the “results”
section ;

– the dictionary contains a large number of compound
lexical forms (over 100.000 compound words);
however the tagger cannot analyse compounds. This
has no influence on the results since the noun phrase
grammar we have developed contains patterns which
match the internal structure of compound words (N de
N, N à N, AN, NA, etc.).

Naturally, this argumentation is valid for any
tagger with a comparable level of accuracy.

Results

Precision
Tagged text: 92.28% (598/648)
Untagged text: 88.67% (493/556)

The small difference in precision scores (3.61%) may
indicate that tagging is not absolutely necessary. Precision
errors are dued to the matching algorithm that gives
priority to longest matches. For instance, the French word
est can be an adjective (east) or a verb (a from of to be).
Consequently, if the matching program considers it as an
adjective, it will provide the following erroneous analysis:

<N0>L'air</N0> alimentant <N1>la
combustion est injecté par des buses à
la base de la chambre</N1>

In the example above, est is a verb, and the correct N1
complement is only la combustion. Such errors occur
when the text is not disambiguated or when a word has
been erroneously disambiguated.

Recall

Tagged text: 47.84 % (598/1250)
Untagged text: 39.44 % (493/1250)

The analysis of these results has highlighted two main
reasons of this difference (8.4 %):

• Incompleteness of electronic dictionaries: even if they
have a very large coverage, these resources cannot be
exhaustive. In a domain such as energy, there are
many neologisms and technical terms that are not in
dictionaries. Therefore an unknown word is a fatal
error with a dictionary-based approach, whereas a
tagger always gives it a tag. When this tag is correct,
the tagger approach is more efficient than the
dictionary one.

• Numbers: in its current state, our prototype contains
no graph able to handle numbers. This fact blocks the
analysis in the same way as unknown words do. On
the other hand, the tagger gives tags to numbers so
that the grammar can deal with them if they are tagged
as determiners.

These poor recall scores are mainly due to complex
structures that occur in texts and that are not taken into
account in our grammars. For example, verb coordination,
anaphora and relatives have not been described (or very
briefly). The reason for this is that, within the framekork
of indexation, we gave priority to precision in order to
extract relevant complements. We did not try to make a
complete parsing of our corpus, but only to parse
sentences that contain enough information to be useful for
indexation.

Conclusion

In this paper, we have presented a parsing
method which is based on a precise linguistic description
and which can be applied to tagged texts as well as
untagged texts. The analysis of the results obtained with
and without disambiguation shows that precision is not
significantly greater if we use a tagger. On the contrary,
we have observed that recall is better with a tagger,
because our method is currently blocked by unknown
units such as neologisms and numbers.

References
Abney, S. (1996). Partial Parsing via Finite-State

Cascades. In, John Carroll Editor, Workshop on
Robust Parsing (ESSLLI'96) (pp. 8-15).

Ait-Mokhtar, S. and Chanod, J.-P. (1997). Incremental
Finite-State Parsing. In Proceedings of the Fifth
Conference on Applied Natural Language Processing.

Boons, J.-P.; Guillet, A. and Leclère, C. (1976). La
structure des phrases simples en français: constructions
intransitives. Droz, Genève.

Brill, E. (1994). Some Advances in Transformation-
Based Part-of-Speech Tagging. In Proceedings of the
Twelfth National Conference on Artificial Intelligence,
volume 1 (pp. 722-727).

Charniak, E. (1997). Statistical Parsing with a Context-
Free Grammar and Word Statistics. In Proceedings of
the Fourteenth National Conference on Artificial
Intelligence, MIT Press.

Church, K. (1988). A Stochastic Parts Program and Noun
Phrase Parser for Unrestricted Text. In Proceedings of
the Second Conference on Applied Natural Language
Processing, ACL.

Collins, M. (1996). A New Statistical Parser Based on
Bigram Lexical Dependencies. In Proceedings of
ACL96.

Cutting, D.; Kupiec, J.; Perdersen, J. and Sibun, P.
(1992). A Practical Part-of-Speech Tagger. In
Proceedings of the Third Conference on Applied
Natural Language Processing, ACL.

Giguet, E. and Vergne, J. (1997). From Part-of-Speech
Tagging to Memory-Based Deep Syntactic Analysis.
In Proceedings of IWPT-97.

Guillet, A. and Leclère, C. (1992). La structure des
phrases simples en français: les constructions
transitives locatives. Droz, Genève.

Koskenniemi, K.; Tapanainen, P. and Voutilainen, A.
(1992). Compiling and Using Finite-State Syntactic
Rules. In COLING'92 (pp. 156—162).

Magerman, D. (1995). Statistical Decision-Tree Model
for Parsing. In Proceedings of the 33th Annual Meeting
of the ACL.

Paumier, S. (2003). De la Reconnaissance de Formes
Linguistiques à l'Analyse Syntaxique. Phd Thesis.
University of Marne-la-Vallée.

Roche, E. (1993). Analyse syntaxique transformationnelle
du français par transducteurs et lexique-grammaire.
Phd Thesis, University of Paris 7.

Schmidt, H. (1994). Probabilistic part-of-speech tagging
using decision trees. In Proceedings of the International
Conference on New Methods in Language Processing
(pp. 44—49), Manchester, UK.

Senellart, J. (1999). Reconnaissance automatique des
entrées du lexique-grammaire des phrases figées. In
Travaux de Linguistique (vol. 37, pp. 109-121).
Duculot, Bruxelles.

Silberztein, M. (1993). Dictionnaires électroniques et
analyse automatique de textes: le système INTEX.
Masson, Paris.

